Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
2.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077089

RESUMO

Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.

3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945442

RESUMO

To better understand the pattern of primate genome structural variation, we sequenced and assembled using multiple long-read sequencing technologies the genomes of eight nonhuman primate species, including New World monkeys (owl monkey and marmoset), Old World monkey (macaque), Asian apes (orangutan and gibbon), and African ape lineages (gorilla, bonobo, and chimpanzee). Compared to the human genome, we identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. Across 50 million years of primate evolution, we estimate that 819.47 Mbp or ~27% of the genome has been affected by SVs based on analysis of these primate lineages. We identify 1,607 structurally divergent regions (SDRs) wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (CARDs, ABCD7, OLAH) and new lineage-specific genes are generated (e.g., CKAP2, NEK5) and have become targets of rapid chromosomal diversification and positive selection (e.g., RGPDs). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species for the first time.

4.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040313

RESUMO

In white-throated sparrows, two alternative morphs differing in plumage and behavior segregate with a large chromosomal rearrangement. As with sex chromosomes such as the mammalian Y, the rearranged version of chromosome two (ZAL2m) is in a near-constant state of heterozygosity, offering opportunities to investigate both degenerative and selective processes during the early evolutionary stages of 'supergenes.' Here, we generated, synthesized, and analyzed extensive genome-scale data to better understand the forces shaping the evolution of the ZAL2 and ZAL2m chromosomes in this species. We found that features of ZAL2m are consistent with substantially reduced recombination and low levels of degeneration. We also found evidence that selective sweeps took place both on ZAL2m and its standard counterpart, ZAL2, after the rearrangement event. Signatures of positive selection were associated with allelic bias in gene expression, suggesting that antagonistic selection has operated on gene regulation. Finally, we discovered a region exhibiting long-range haplotypes inside the rearrangement on ZAL2m. These haplotypes appear to have been maintained by balancing selection, retaining genetic diversity within the supergene. Together, our analyses illuminate mechanisms contributing to the evolution of a young chromosomal polymorphism, revealing complex selective processes acting concurrently with genetic degeneration to drive the evolution of supergenes.


Assuntos
Pardais , Animais , Evolução Molecular , Mamíferos/genética , Polimorfismo Genético , Recombinação Genética , Cromossomos Sexuais , Pardais/genética
5.
Nat Commun ; 12(1): 2021, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795684

RESUMO

DNA methylation is a critical regulatory mechanism implicated in development, learning, memory, and disease in the human brain. Here we have elucidated DNA methylation changes during recent human brain evolution. We demonstrate dynamic evolutionary trajectories of DNA methylation in cell-type and cytosine-context specific manner. Specifically, DNA methylation in non-CG context, namely CH methylation, has increased (hypermethylation) in neuronal gene bodies during human brain evolution, contributing to human-specific down-regulation of genes and co-expression modules. The effects of CH hypermethylation is particularly pronounced in early development and neuronal subtypes. In contrast, DNA methylation in CG context shows pronounced reduction (hypomethylation) in human brains, notably in cis-regulatory regions, leading to upregulation of downstream genes. We show that the majority of differential CG methylation between neurons and oligodendrocytes originated before the divergence of hominoids and catarrhine monkeys, and harbors strong signal for genetic risk for schizophrenia. Remarkably, a substantial portion of differential CG methylation between neurons and oligodendrocytes emerged in the human lineage since the divergence from the chimpanzee lineage and carries significant genetic risk for schizophrenia. Therefore, recent epigenetic evolution of human cortex has shaped the cellular regulatory landscape and contributed to the increased vulnerability to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Encéfalo/citologia , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Pan troglodytes/genética , Fatores de Risco , Esquizofrenia/genética
6.
Mol Ecol ; 30(14): 3453-3467, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33421223

RESUMO

Much of our knowledge on regulatory impacts of DNA methylation has come from laboratory-bred model organisms, which may not exhibit the full extent of variation found in wild populations. Here, we investigated naturally-occurring variation in DNA methylation in a wild avian species, the white-throated sparrow (Zonotrichia albicollis). This species offers exceptional opportunities for studying the link between genetic differentiation and phenotypic traits because of a nonrecombining chromosome pair linked to both plumage and behavioural phenotypes. Using novel single-nucleotide resolution methylation maps and gene expression data, we show that DNA methylation and the expression of DNA methyltransferases are significantly higher in adults than in nestlings. Genes for which DNA methylation varied between nestlings and adults were implicated in development and cell differentiation and were located throughout the genome. In contrast, differential methylation between plumage morphs was concentrated in the nonrecombining chromosome pair. Interestingly, a large number of CpGs on the nonrecombining chromosome, localized to transposable elements, have undergone dramatic loss of DNA methylation since the split of the ZAL2 and ZAL2m chromosomes. Changes in methylation predicted changes in gene expression for both chromosomes. In summary, we demonstrate changes in genome-wide DNA methylation that are associated with development and with specific functional categories of genes in white-throated sparrows. Moreover, we observe substantial DNA methylation reprogramming associated with the suppression of recombination, with implications for genome integrity and gene expression divergence. These results offer an unprecedented view of ongoing epigenetic reprogramming in a wild population.


Assuntos
Pardais , Animais , Cromossomos/genética , Metilação de DNA , Genoma/genética , Recombinação Genética , Pardais/genética
7.
Genome Biol Evol ; 12(8): 1482-1492, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597952

RESUMO

Parent-of-origin methylation arises when the methylation patterns of a particular allele are dependent on the parent it was inherited from. Previous work in honey bees has shown evidence of parent-of-origin-specific expression, yet the mechanisms regulating such pattern remain unknown in honey bees. In mammals and plants, DNA methylation is known to regulate parent-of-origin effects such as genomic imprinting. Here, we utilize genotyping of reciprocal European and Africanized honey bee crosses to study genome-wide allele-specific methylation patterns in sterile and reproductive individuals. Our data confirm the presence of allele-specific methylation in honey bees in lineage-specific contexts but also importantly, though to a lesser degree, parent-of-origin contexts. We show that the majority of allele-specific methylation occurs due to lineage rather than parent-of-origin factors, regardless of the reproductive state. Interestingly, genes affected by allele-specific DNA methylation often exhibit both lineage and parent-of-origin effects, indicating that they are particularly labile in terms of DNA methylation patterns. Additionally, we re-analyzed our previous study on parent-of-origin-specific expression in honey bees and found little association with parent-of-origin-specific methylation. These results indicate strong genetic background effects on allelic DNA methylation and suggest that although parent-of-origin effects are manifested in both DNA methylation and gene expression, they are not directly associated with each other.


Assuntos
Abelhas/genética , Metilação de DNA , Animais , Cruzamentos Genéticos , Genoma de Inseto , Sequenciamento Completo do Genoma
8.
Genome Biol Evol ; 12(3): 103-121, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031619

RESUMO

The candidate phyla radiation (CPR) is a proposed subdivision within the bacterial domain comprising several candidate phyla. CPR organisms are united by small genome and physical sizes, lack several metabolic enzymes, and populate deep branches within the bacterial subtree of life. These features raise intriguing questions regarding their origin and mode of evolution. In this study, we performed a comparative and phylogenomic analysis to investigate CPR origin and evolution. Unlike previous gene/protein sequence-based reports of CPR evolution, we used protein domain superfamilies classified by protein structure databases to resolve the evolutionary relationships of CPR with non-CPR bacteria, Archaea, Eukarya, and viruses. Across all supergroups, CPR shared maximum superfamilies with non-CPR bacteria and were placed as deep branching bacteria in most phylogenomic trees. CPR contributed 1.22% of new superfamilies to bacteria including the ribosomal protein L19e and encoded four core superfamilies that are likely involved in cell-to-cell interaction and establishing episymbiotic lifestyles. Although CPR and non-CPR bacterial proteomes gained common superfamilies over the course of evolution, CPR and Archaea had more common losses. These losses mostly involved metabolic superfamilies. In fact, phylogenies built from only metabolic protein superfamilies separated CPR and non-CPR bacteria. These findings indicate that CPR are bacterial organisms that have probably evolved in an Archaea-like manner via the early loss of metabolic functions. We also discovered that phylogenies built from metabolic and informational superfamilies gave contrasting views of the groupings among Archaea, Bacteria, and Eukarya, which add to the current debate on the evolutionary relationships among superkingdoms.


Assuntos
Bactérias/genética , Evolução Molecular , Archaea/genética , Bactérias/classificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Filogenia , Domínios Proteicos/genética , Proteoma , Doadores de Tecidos
9.
Genome Biol ; 20(1): 135, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288836

RESUMO

BACKGROUND: The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-specific whole-genome methylomes (N = 95) and transcriptomes (N = 89) from neurons and oligodendrocytes obtained from brain tissue of patients with schizophrenia and matched controls. RESULTS: The methylomes of the two cell types are highly distinct, with the majority of differential DNA methylation occurring in non-coding regions. DNA methylation differences between cases and controls are subtle compared to cell type differences, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA methylation between control and schizophrenia tends to occur in cell type differentially methylated sites, highlighting the significance of cell type-specific epigenetic dysregulation in a complex neuropsychiatric disorder. CONCLUSIONS: Our results provide novel and comprehensive methylome and transcriptome data from distinct cell populations within patient-derived brain tissues. This data clearly demonstrate that cell type epigenetic-differentiated sites are preferentially targeted by disease-associated epigenetic dysregulation. We further show reduced cell type epigenetic distinction in schizophrenia.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Esquizofrenia/genética , Encéfalo/citologia , Estudos de Casos e Controles , Humanos , Esquizofrenia/metabolismo
10.
Sci Rep ; 9(1): 5953, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976019

RESUMO

Horizontal gene transfer (HGT) is widespread in the evolution of prokaryotes, especially those associated with the human body. Here, we implemented large-scale gene-species phylogenetic tree reconstructions and reconciliations to identify putative HGT-derived genes in the reference genomes of microbiota isolated from six major human body sites by the NIH Human Microbiome Project. Comparisons with a control group representing microbial genomes from diverse natural environments indicated that HGT activity increased significantly in the genomes of human microbiota, which is confirmatory of previous findings. Roughly, more than half of total genes in the genomes of human-associated microbiota were transferred (donated or received) by HGT. Up to 60% of the detected HGTs occurred either prior to the colonization of the human body or involved bacteria residing in different body sites. The latter could suggest 'genetic crosstalk' and movement of bacterial genes within the human body via hitherto poorly understood mechanisms. We also observed that HGT activity increased significantly among closely-related microorganisms and especially when they were united by physical proximity, suggesting that the 'phylogenetic effect' can significantly boost HGT activity. Finally, we identified several core and widespread genes least influenced by HGT that could become useful markers for building robust 'trees of life' and address several outstanding technical challenges to improve the phylogeny-based genome-wide HGT detection method for future applications.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Transferência Genética Horizontal , Genes Bacterianos , Genoma Bacteriano , Filogenia , Bactérias/classificação , Bactérias/isolamento & purificação , Evolução Molecular , Humanos , Modelos Genéticos
11.
Genome Biol Evol ; 10(10): 2766-2776, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239702

RESUMO

Recent genome-wide DNA methylation analyses of insect genomes accentuate an intriguing contrast compared with those in mammals. In mammals, most CpGs are heavily methylated, with the exceptions of clusters of hypomethylated sites referred to as CpG islands. In contrast, DNA methylation in insects is localized to a small number of CpG sites. Here, we refer to clusters of methylated CpGs as "methylation islands (MIs)," and investigate their characteristics in seven hymenopteran insects with high-quality bisulfite sequencing data. Methylation islands were primarily located within gene bodies. They were significantly overrepresented in exon-intron boundaries, indicating their potential roles in splicing. Methylated CpGs within MIs exhibited stronger evolutionary conservation compared with those outside of MIs. Additionally, genes harboring MIs exhibited higher and more stable levels of gene expression compared with those that do not harbor MIs. The effects of MIs on evolutionary conservation and gene expression are independent and stronger than the effect of DNA methylation alone. These results indicate that MIs may be useful to gain additional insights into understanding the role of DNA methylation in gene expression and evolutionary conservation in invertebrate genomes.


Assuntos
Ilhas de CpG , Metilação de DNA , Genoma de Inseto , Himenópteros/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Expressão Gênica
12.
Front Syst Neurosci ; 12: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618656

RESUMO

The pharmacological agent nitroglycerin (NTG) elicits hyperalgesia and allodynia in mice. This model has been used to study the neurological disorder of trigeminovascular pain or migraine, a debilitating form of hyperalgesia. The present study validates hyperalgesia in an established mouse model of chronic migraine triggered by NTG and advances the understanding of the associated molecular mechanisms. The RNA-seq profiles of two nervous system regions associated with pain, the trigeminal ganglia (TG) and the nucleus accumbens (NAc), were compared in mice receiving chronic NTG treatment relative to control (CON) mice. Among the 109 genes that exhibited an NTG treatment-by-region interaction, solute carrier family 32 (GABA vesicular transporter) member 1 (Slc32a1) and preproenkephalin (Penk) exhibited reversal of expression patterns between the NTG and CON groups. Erb-b2 receptor tyrosine kinase 4 (Erbb4) and solute carrier family 1 (glial high affinity glutamate transporter) member 2 (Slc1a2) exhibited consistent differential expression between treatments across regions albeit at different magnitude. Period circadian clock 1 (Per1) was among the 165 genes that exhibited significant NTG treatment effect. Biological processes disrupted by NTG in a region-specific manner included adaptive and innate immune responses; whereas glutamatergic and dopaminergic synapses and rhythmic process were disrupted in both regions. Regulatory network reconstruction highlighted the widespread role of several transcription factors (including Snrnp70, Smad1, Pax6, Cebpa, and Smpx) among the NTG-disrupted target genes. These results advance the understanding of the molecular mechanisms of hyperalgesia that can be applied to therapies to ameliorate chronic pain and migraine.

13.
Front Genet ; 8: 112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894459

RESUMO

Genome-wide global detection of genes involved in horizontal gene transfer (HGT) remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA "reference" trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa) member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate) in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes) that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

15.
Genome Biol ; 18(1): 34, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219390

RESUMO

BACKGROUND: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. RESULTS: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. CONCLUSIONS: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.


Assuntos
Variação Genética , Genoma , Genômica , Adaptação Biológica , Animais , Bovinos , Meio Ambiente , Evolução Molecular , Interação Gene-Ambiente , Genética Populacional , Genômica/métodos , Geografia , Humanos , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Estresse Fisiológico
16.
Biomed Pharmacother ; 88: 625-634, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28142119

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases worldwide and has continuously increased. NAFLD refers to a spectrum of diseases ranging from fatty liver to steatohepatitis, cirrhosis, and even to hepatocyte carcinoma. Excessive fatty acid enters the cell and the mitochondria undergo stress and unremoved ROS can trigger a form of cell apoptosis known as 'lipoapoptosis'. NASH arises from damaged liver hepatocytes due to lipotoxicity. NASH not only involves lipid accumulation and apoptosis but also inflammation. Ginkgo biloba has been tested clinical trials as a traditional medicine for asthma, bronchitis and cardiovascular disease. The effects of Ginkgolide A (GA), derived from the ginkgo biloba leaf, are still unknown in NAFLD. To determine the protective effects of GA in NAFLD, we examined the fatty liver disease condition in the non-esterified fatty acid (NEFA)-induced HepG2 cell line and in a high fat diet mouse model. The findings of this study suggest that GA is non-toxic at high concentrations in hepatocytes. Moreover, GA was found to inhibit cellular lipogenesis and lipid accumulation by causing mitochondrial oxidative stress. GA showed hepatoprotective efficacy by inducing cellular lipoapoptosis and by inhibiting cellular inflammation. The results demonstrated that GA may be feasible as a therapeutic agent for NAFLD patients.


Assuntos
Ginkgolídeos/uso terapêutico , Lactonas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Ginkgolídeos/administração & dosagem , Ginkgolídeos/sangue , Ginkgolídeos/farmacologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Lactonas/administração & dosagem , Lactonas/sangue , Lactonas/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão/efeitos dos fármacos
17.
PLoS One ; 12(1): e0169226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076398

RESUMO

Congenital cataracts can occur as a non-syndromic isolated ocular disease or as a part of genetic syndromes accompanied by a multi-systemic disease. Approximately 50% of all congenital cataract cases have a heterogeneous genetic basis. Here, we describe three generations of a family with an autosomal dominant inheritance pattern and common complex phenotypes, including bilateral congenital cataracts, short stature, macrocephaly, and minor skeletal anomalies. We did not find any chromosomal aberrations or gene copy number abnormalities using conventional genetic tests; accordingly, we conducted whole-exome sequencing (WES) to identify disease-causing genetic alterations in this family. Based on family WES data, we identified a novel BRD4 missense mutation as a candidate causal variant and performed cell-based experiments by ablation of endogenous BRD4 expression in human lens epithelial cells. The protein expression levels of connexin 43, p62, LC3BII, and p53 differed significantly between control cells and cells in which endogenous BRD4 expression was inhibited. We inferred that a BRD4 missense mutation was the likely disease-causing mutation in this family. Our findings may improve the molecular diagnosis of congenital cataracts and support the use of WES to clarify the genetic basis of complex diseases.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Catarata/genética , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Animais , Doenças do Desenvolvimento Ósseo/complicações , Catarata/complicações , Catarata/congênito , Proteínas de Ciclo Celular , Células Cultivadas , Análise Mutacional de DNA , Família , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Malformações do Sistema Nervoso/complicações , Linhagem
18.
Biomed Pharmacother ; 83: 431-438, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27424324

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic syndrome that results from target-tissue resistance to insulin. Obesity is the condition of excess body fat accumulation. T2DM and obesity are both associated with hypertension, hyperlipidemia, and abdominal obesity. In Korean medicine, Yangkyuksanhwa-tang (YKSHT) has been prescribed for patients with T2DM. Oral glucose tolerance tests (OGTT), multiplex assays and hemoglobin A1C (HbA1C) assessments were performed to determine the anti-diabetic effects of YKSHT and two major compositions of YKSHT, Lonicera japonica Thunb. (LJT) and Rehmannia glutinosa (RG) on db/db mice, a rodent model for T2DM. To study the anti-obesitic effects of LJT, RG or YKSHT, blood profiling including the triglycerides (TGs) and the total, LDL and HDL cholesterol levels were measured. In addition, body index measures such as the liver, retroperitoneal and epididymal fat tissues were collected and weighed. Mice treated with RG or YKSHT showed reduced blood glucose levels after stimulating the plasma GLP-1 levels. The multiplex assay results support the weight-controlling effects of the LJT, RG and YKSHT treatments, showing reducing levels of ghrelin and the induction of peptide YY (PYY) secretion. The YKSHT treatment reduced plasma TG levels and increased HDL cholesterol levels. The weights of the liver, retroperitoneal and epididymal fat tissues were reduced after the YKSHT treatment. Hence, we suggest that YKSHT can be utilized for the prevention and treatment of T2DM and obesity simultaneously.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Adiposidade/efeitos dos fármacos , Animais , HDL-Colesterol/sangue , Cromatografia Líquida , Diabetes Mellitus Experimental/sangue , Medicamentos de Ervas Chinesas/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/tratamento farmacológico , Especificidade de Órgãos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Triglicerídeos/sangue
19.
BMC Complement Altern Med ; 16: 239, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27456850

RESUMO

BACKGROUND: Liver steatosis was caused by lipid accumulation in the liver. Alisma orientale (AO) is recognized as a promising candidate with therapeutic efficacy for the treatment of nonalcoholic fatty liver disease (NAFLD). HepG2 hepatocyte cell line is commonly used for liver disease cell model. METHOD: The HepG2 cells were cultured with the NEFAs mixture (oleic and palmitic acids, 2:1 ratio) for 24 h to induce hepatic steatosis. Then different doses of Alisma orientale extract (AOE) was treated to HepG2 for 24 h. Incubated cells were used for further experiments. RESULTS: The AOE showed inhibitory effects on lipid accumulation in the Oil Red O staining and Nile red staining tests with no cytotoxicity at a concentration of 300 µg/mL. Fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) mRNA and protein expression level were down-regulated after AOE treatment. Bcl-2 associated X protein (Bax) and c-Jun N-terminal kinase (JNK) mRNA expression level were decreased as well as p-JNK (activated form of JNK), Bax, cleaved caspase-9, caspase-3 protein expression level. Anti-apopototic B-cell lymphoma 2 (Bcl-2) protein level increased after AOE treatment. In addition, inflammatory protein expression including p-p65, p65, COX-2 and iNOS were inhibited by AOE treatment. CONCLUSION: The results suggest that AOE has anti-steatosis effects that involve lipogenesis, anti-lipoapoptosis, and anti-inflammation in the NEFA-induced NAFLD pathological cell model.


Assuntos
Alisma/química , Apoptose/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Lipogênese/genética , Extratos Vegetais/química
20.
Sci Rep ; 6: 26484, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27215397

RESUMO

Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucana's phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others.


Assuntos
Galinhas/genética , Elementos de DNA Transponíveis , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/métodos , Animais , Tamanho Corporal , Cruzamento , Galinhas/fisiologia , Casca de Ovo , Mutação INDEL , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...